49 research outputs found

    Efficient computation of approximate pure Nash equilibria in congestion games

    Get PDF
    Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes O(1)-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes (2+ϵ)(2+\epsilon)-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and 1/ϵ1/\epsilon. It also applies to games with polynomial latency functions with constant maximum degree dd; there, the approximation guarantee is dO(d)d^{O(d)}. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium; the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing ρ\rho-approximate equilibria is {\sf PLS}-complete for any polynomial-time computable ρ\rho

    Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure

    Full text link
    We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of (pure Nash) equilibria is guaranteed by potential function arguments. Unfortunately, this proof of existence is inefficient and computing equilibria is such games is a {\sf PLS}-hard problem. The situation gets worse when superlinear latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and equilibria may not even exist. Given these obstacles, we consider approximate equilibria as alternative solution concepts. Do such equilibria exist? And if so, can we compute them efficiently? We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ\Psi-games. This allows us to show that these games have d!d!-approximate equilibria, where dd is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate equilibria when dd is a constant. For games with linear latency functions, the approximation guarantee is 3+52+O(γ)\frac{3+\sqrt{5}}{2}+O(\gamma) for arbitrarily small γ>0\gamma>0; for latency functions with maximum degree d2d\geq 2, it is d2d+o(d)d^{2d+o(d)}. The running time is polynomial in the number of bits in the representation of the game and 1/γ1/\gamma. As a byproduct of our techniques, we also show the following structural statement for weighted congestion games with polynomial latency functions of maximum degree d2d\geq 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)d^{O(d^2)}-approximate equilibrium exist and can be efficiently identified in such games as long as dd is constant.Comment: 31 page

    Multilevel Network Games

    Full text link
    We consider a multilevel network game, where nodes can improve their communication costs by connecting to a high-speed network. The nn nodes are connected by a static network and each node can decide individually to become a gateway to the high-speed network. The goal of a node vv is to minimize its private costs, i.e., the sum (SUM-game) or maximum (MAX-game) of communication distances from vv to all other nodes plus a fixed price α>0\alpha > 0 if it decides to be a gateway. Between gateways the communication distance is 00, and gateways also improve other nodes' distances by behaving as shortcuts. For the SUM-game, we show that for αn1\alpha \leq n-1, the price of anarchy is Θ(n/α)\Theta(n/\sqrt{\alpha}) and in this range equilibria always exist. In range α(n1,n(n1))\alpha \in (n-1,n(n-1)) the price of anarchy is Θ(α)\Theta(\sqrt{\alpha}), and for αn(n1)\alpha \geq n(n-1) it is constant. For the MAX-game, we show that the price of anarchy is either Θ(1+n/α)\Theta(1 + n/\sqrt{\alpha}), for α1\alpha\geq 1, or else 11. Given a graph with girth of at least 4α4\alpha, equilibria always exist. Concerning the dynamics, both the SUM-game and the MAX-game are not potential games. For the SUM-game, we even show that it is not weakly acyclic.Comment: An extended abstract of this paper has been accepted for publication in the proceedings of the 10th International Conference on Web and Internet Economics (WINE

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    Network Investment Games with Wardrop Followers

    Get PDF
    We study a two-sided network investment game consisting of two sets of players, called providers and users. The game is set in two stages. In the first stage, providers aim to maximize their profit by investing in bandwidth of cloud computing services. The investments of the providers yield a set of usable services for the users. In the second stage, each user wants to process a task and therefore selects a bundle of services so as to minimize the total processing time. We assume the total processing time to be separable over the chosen services and the processing time of each service to depend on the utilization of the service and the installed bandwidth. We provide insights on how competition between providers affects the total costs of the users and show that every game on a series-parallel graph can be reduced to an equivalent single edge game when analyzing the set of subgame perfect Nash equilibria

    Altruism in Atomic Congestion Games

    Full text link
    This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting increase in social cost. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges. In addition to these results for uncoordinated dynamics, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.Comment: 13 pages, 1 figure, includes some minor adjustment

    Strategic Facility Location with Clients that Minimize Total Waiting Time

    Get PDF
    We study a non-cooperative two-sided facility location game in which facilities and clients behave strategically. This is in contrast to many other facility location games in which clients simply visit their closest facility. Facility agents select a location on a graph to open a facility to attract as much purchasing power as possible, while client agents choose which facilities to patronize by strategically distributing their purchasing power in order to minimize their total waiting time. Here, the waiting time of a facility depends on its received total purchasing power. We show that our client stage is an atomic splittable congestion game, which implies existence, uniqueness and efficient computation of a client equilibrium. Therefore, facility agents can efficiently predict client behavior and make strategic decisions accordingly. Despite that, we prove that subgame perfect equilibria do not exist in all instances of this game and that their existence is NP-hard to decide. On the positive side, we provide a simple and efficient algorithm to compute 3-approximate subgame perfect equilibria.Comment: To appear at the 37th AAAI Conference on Artificial Intelligence (AAAI-23), full versio

    Approximate Pure Nash Equilibria in Weighted Congestion Games

    Get PDF
    We study the existence of approximate pure Nash equilibria in weighted congestion games and develop techniques to obtain approximate potential functions that prove the existence of alpha-approximate pure Nash equilibria and the convergence of alpha-improvement steps. Specifically, we show how to obtain upper bounds for approximation factor alpha for a given class of cost functions. For example for concave cost functions the factor is at most 3/2, for quadratic cost functions it is at most 4/3, and for polynomial cost functions of maximal degree d it is at at most d + 1. For games with two players we obtain tight bounds which are as small as for example 1.054 in the case of quadratic cost functions

    Multi-unit Bilateral Trade

    Get PDF
    We characterise the set of dominant strategy incentive compatible (DSIC), strongly budget balanced (SBB), and ex-post individually rational (IR) mechanisms for the multi-unit bilateral trade setting. In such a setting there is a single buyer and a single seller who holds a finite number k of identical items. The mechanism has to decide how many units of the item are transferred from the seller to the buyer and how much money is transferred from the buyer to the seller. We consider two classes of valuation functions for the buyer and seller: Valuations that are increasing in the number of units in possession, and the more specific class of valuations that are increasing and submodular. Furthermore, we present some approximation results about the performance of certain such mechanisms, in terms of social welfare: For increasing submodular valuation functions, we show the existence of a deterministic 2-approximation mechanism and a randomised e/(1-e) approximation mechanism, matching the best known bounds for the single-item setting
    corecore